135 research outputs found

    Parsimonious Clone Tree Reconciliation in Cancer

    Get PDF
    Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation of cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants (SNVs) to copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has important clinical applications, several computational methods have been introduced to identify clones from DNA sequencing data. However, due to technological and methodological limitations, current analyses are restricted to identifying tumor clones only based on either SNVs or CNAs, preventing a comprehensive characterization of a tumor's clonal composition. To overcome these challenges, we formulate the identification of clones in terms of both SNVs and CNAs as a reconciliation problem while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize the computational complexity of this problem and we introduce a mixed integer linear programming formulation to solve it exactly. On simulated data, we show that tumor clones can be identified reliably, especially when further taking into account the ancestral relationships that can be inferred from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our reconciliation approach provides a higher resolution view of tumor evolution than previous studies

    Parsimonious Clone Tree Integration in cancer

    Get PDF
    BACKGROUND: Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation of cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants (SNVs) to copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has important clinical applications, several computational methods have been introduced to identify clones from DNA sequencing data. However, due to technological and methodological limitations, current analyses are restricted to identifying tumor clones only based on either SNVs or CNAs, preventing a comprehensive characterization of a tumor's clonal composition. RESULTS: To overcome these challenges, we formulate the identification of clones in terms of both SNVs and CNAs as a integration problem while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize the computational complexity of this problem and we introduce PACTION (PArsimonious Clone Tree integratION), an algorithm that solves the problem using a mixed integer linear programming formulation. On simulated data, we show that tumor clones can be identified reliably, especially when further taking into account the ancestral relationships that can be inferred from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our integration approach provides a higher resolution view of tumor evolution than previous studies. CONCLUSION: PACTION is an accurate and fast method that reconstructs clonal architecture of cancer tumors by integrating SNV and CNA clones inferred using existing methods

    On the Inversion-Indel Distance

    Get PDF
    Willing E, Zaccaria S, Dias Vieira Braga M, Stoye J. On the Inversion-Indel Distance. BMC Bioinformatics. 2013;14(Suppl 15: Proc. of RECOMB-CG 2013): S3.Background The inversion distance, that is the distance between two unichromosomal genomes with the same content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation. Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time. Results In the present work we put these two results together to solve an open problem, showing that, when the graph that represents the relation between the two compared genomes has no bad components, the inversion-indel distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel distance in the presence of bad components

    RICO-MR: An Open-Source Architecture for Robot Intent Communication through Mixed Reality

    Full text link
    This article presents an open-source architecture for conveying robots' intentions to human teammates using Mixed Reality and Head-Mounted Displays. The architecture has been developed focusing on its modularity and re-usability aspects. Both binaries and source code are available, enabling researchers and companies to adopt the proposed architecture as a standalone solution or to integrate it in more comprehensive implementations. Due to its scalability, the proposed architecture can be easily employed to develop shared Mixed Reality experiences involving multiple robots and human teammates in complex collaborative scenarios.Comment: 6 pages, 3 figures, accepted for publication in the proceedings of the 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN

    Insights into the metastatic cascade through research autopsies

    Get PDF
    Metastasis is a complex process and the leading cause of cancer-related death globally. Recent studies have demonstrated that genomic sequencing data from paired primary and metastatic tumours can be used to trace the evolutionary origins of cells responsible for metastasis. This approach has yielded new insights into the genomic alterations that engender metastatic potential, and the mechanisms by which cancer spreads. Given that the reliability of these approaches is contingent upon how representative the samples are of primary and metastatic tumour heterogeneity, we review insights from studies that have reconstructed the evolution of metastasis within the context of their cohorts and designs. We discuss the role of research autopsies in achieving the comprehensive sampling necessary to advance the current understanding of metastasis

    The copy-number tree mixture deconvolution problem and applications to multi-sample bulk sequencing tumor data

    Get PDF
    Cancer is an evolutionary process driven by somatic mutation. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the mutational complexity of cancer and the fact that nearly all cancer sequencing is of bulk tissue, measuring a super-position of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy number data from multiple samples of a tumor. CNTMD generalizes two approaches that have been researched intensively in recent years: deconvolution/factorization algorithms that aim to infer the number and proportions of clones in a mixed tumor sample; and phylogenetic models of copy number evolution that model the dependencies between copy number events that affect the same genomic loci. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that perform either deconvolution or phylogenetic tree construction under the assumption of a single tumor clone per sample. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher-resolution view of copy number evolution of this cancer than published analyses

    The translational challenges of precision oncology

    Get PDF
    The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure

    CNAViz: An interactive webtool for user-guided segmentation of tumor DNA sequencing data

    Get PDF
    Copy-number aberrations (CNAs) are genetic alterations that amplify or delete the number of copies of large genomic segments. Although they are ubiquitous in cancer and, thus, a critical area of current cancer research, CNA identification from DNA sequencing data is challenging because it requires partitioning of the genome into complex segments with the same copy-number states that may not be contiguous. Existing segmentation algorithms address these challenges either by leveraging the local information among neighboring genomic regions, or by globally grouping genomic regions that are affected by similar CNAs across the entire genome. However, both approaches have limitations: overclustering in the case of local segmentation, or the omission of clusters corresponding to focal CNAs in the case of global segmentation. Importantly, inaccurate segmentation will lead to inaccurate identification of CNAs. For this reason, most pan-cancer research studies rely on manual procedures of quality control and anomaly correction. To improve copy-number segmentation, we introduce CNAViz, a web-based tool that enables the user to simultaneously perform local and global segmentation, thus overcoming the limitations of each approach. Using simulated data, we demonstrate that by several metrics, CNAViz allows the user to obtain more accurate segmentation relative to existing local and global segmentation methods. Moreover, we analyze six bulk DNA sequencing samples from three breast cancer patients. By validating with parallel single-cell DNA sequencing data from the same samples, we show that by using CNAViz, our user was able to obtain more accurate segmentation and improved accuracy in downstream copy-number calling
    • …
    corecore